- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Iezzi, Annamaria (2)
-
Biasse, Jean-Francois (1)
-
Fuselier, Jenny (1)
-
Jacobson, Micheal (1)
-
Kozek, Mark (1)
-
Morrison, Travis (1)
-
Namoijam, Changningphaabi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 1, 2026
-
Biasse, Jean-Francois; Iezzi, Annamaria; Jacobson, Micheal (, Indocrypt 2019)We propose a quantum algorithm for computing an isogeny between two elliptic curves E1,E2 defined over a finite field such that there is an imaginary quadratic order O satisfying O~End(Ei )for i=1,2. This concerns ordinary curves and supersingular curves defined over Fp (the latter used in the recent CSIDH proposal). Our algorithm has heuristic asymptotic run time exp(O(√log(|Δ|))) and requires polynomial quantum memory and exp(O(√log(|Δ|))) quantumly accessible classical memory, where Δ is the discriminant of O. This asymptotic complexity outperforms all other available methods for computing isogenies.We also show that a variant of our method has asymptotic run time e exp(Õ(√log(|Δ|))) while requesting only polynomial memory (both quantum and classical).more » « less
An official website of the United States government
